Closed form solutions to nonserial, nonconvex quadratic programming problems using dynamic programming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Globally solving nonconvex quadratic programming problems via completely positive programming

Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Th...

متن کامل

Canonical Duality Theory and Solutions to Constrained Nonconvex Quadratic Programming

This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points ...

متن کامل

Quadratic bi-level programming problems: a fuzzy goal programming approach

This paper presents a fuzzy goal programming (FGP) methodology for solving bi-level quadratic programming (BLQP) problems. In the FGP model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them, and suitable membership function is defined for each objectives, and also the membership functions for vec...

متن کامل

An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...

متن کامل

Postoptimal Analysis in Nonserial Dynamic Programming

Usually, discrete optimization problems (DOPs) from applications have a special structure, and the matrices of constraints for largescale problems have a lot of zero elements (sparse matrices). One of the promising ways to exploit sparsity in the interaction graph of the DOP is nonserial dynamic programming (NSDP), which allows to compute a solution in stages such that each of them uses results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1982

ISSN: 0022-247X

DOI: 10.1016/0022-247x(82)90244-x